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Abstract

In this work, an accurate computational model for analyzing tire–soil interaction problems is described. In the

traditional approach, Bekker equation is written in a global form and a quasi-static analysis is then carried out to

iteratively capture the interaction of the tire, which is modeled as a rigid wheel and the soil. The iteration is tedious but

required in order to model the nonlinear relationship between soil sinkage and pressure, and the unknown loading/

unloading/reloading status of the soil that is dependent on past histories. An incremental form of Bekker model is

proposed to overcome some of the difficulties in the traditional approach. The method involves formulating the contact

dynamics with a set of complementarity equations. This approach allows the contact forces to be evaluated as part of the

solution of the unknown kinematics, and thereby, stay current during an iteration. In contrast, the contact forces in the

traditional Bekker method are always be one time-step back. The net result is enhanced computational accuracy and

convergency for the proposed incremental Bekker approach. Two examples are solved to demonstrate the effectiveness of

the proposed algorithm. Solutions for soil sinkage, drawbar pull, normal pressure, and shear stress for a tire interacting

with three types of soil; loose sand, soft soil, and LETE sand are provided and compared with published results.

The comparison shows good agreement.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

One of the key determinants in assessing the performance of off-road vehicles in terms of ride comfort and
safety is the dynamics interaction between the tire and the soil. A comprehensive survey of this research area is
described in Schmid [1]. The techniques for investigating the tire–soil interaction problem can be broadly
grouped into three categories: (a) analytic methods [2], (b) empirical methods [3], and (c) finite element
methods [4,5]. In his classic book, Wong [6] provided a good introduction of the first two methods. The third
approach is very popular with several finite element models having been proposed. Hiroma et al. [4]
investigated stress distributions under a wheel by accounting for the friction and adhesion between the wheel
and soil using a viscoelastic finite element soil model. Liu and Wong [5] suggested a finite element-based
critical state soil mechanics approach for handling tire–soil interaction. They looked at the tractive
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Nomenclature

Au parameter characterizing terrain re-
sponse to repetitive loading

b smaller dimension of the tire footprint
btr tire width
c soil cohesion
cg geometric damping constant
Fsd damping force of the tire during unload-

ing or reloading of soil
fi friction stress at time t

gn
i gap function
_gt

i relative tangential velocity
j shear displacement
K shear deformation modulus
kc cohesive soil modulus
k0 parameter characterizing terrain re-

sponse to repetitive loading
ku terrain stiffness during unloading or

reloading

kf friction soil modulus
n exponent employed in Bekker equation

(see Eq. (1))
p normal pressure
pu peak pressure at the start of the unloading

s shear stress
smax maximum shear stress
yc,zc coordinates of the tire’s mass center
W wheel load
z sinkage
ze recoverable or elastic sinkage
zp irrecoverable or plastic sinkage
zu,zu1 peak sinkage at the start of the unloading,

limit value (see Eq. (6))
f angle of shearing resistance
Z,Z1,Z0 rebound ratio (see Eq. (5)), rebound ratio

for zu1, rebound ratio as zu-0
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performance of rigid wheels moving on sand. Wulfsohn and Upadhyaya [7] predicted traction and soil
compaction using two- and three-dimensional tire–soil contact profiles. To compute the pressure distribution,
they used a semi-logarithmic porosity–stress relationship in their soil model. Fassbender et al. [8] and Grahn
[9] investigated the vehicle dynamics on soft soil by adopting a dynamic pressure–sinkage relationship that is
dependent on the penetration velocity. Through a series of careful experimental measurements, Onafeko and
Reece [10] obtained stress distributions on the tire–soil interface.

To accurately capture the effects of tire–soil interaction, it is necessary to properly formulate the model by
taking into consideration the coupled and nonlinear problems of deformable tire dynamics, tire–soil contacts,
and soil elasto-plastic deformations. A high-fidelity model of the tire–soil contact interaction model can
therefore, be complex and computationally challenging. Most of the current analyses are based on a quasi-
static equilibrium approach with an assumed slip. These methods can yield meaningful results, particularly,
when parametric studies of the performance are required. If a realistically accurate prediction is required,
improvements and modifications for these methods are necessary. The popular approach is to resort to using
finite element-based models. However, a time integration of the elasto-plastic finite element model of a moving
vehicle for its dynamic response can be tedious and expensive. Hence, the Bekker model [6,11] is still widely
used to reduce order of complexity in the numerical computations.

In this work, an incremental form of Bekker model is proposed. It leads to a set of nonlinear
complementarity equations for characterizing tire–soil interaction. These equations describe the dynamic
contacts between the tire and soil with friction, and allow the contact forces of pressures and friction to be
solved directly as part of the solution of the unknown tire kinematics. Hence, the contact forces will always
stay current during the iteration. To demonstrate the effectiveness of the approach, two examples involving
the interaction of a tire with three types of soil are solved.

2. Bekker model

2.1. Pressure– sinkage relationship

Fig. 1 depicts a typical pressure–sinkage relationship of the Bekker model. It consists of three paths: the
loading path OA where sinkage z increases with applied pressure p; the unloading path AB where the soil does
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Fig. 1. Loading, unloading and reloading paths of the Bekker model.
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not recover completely, giving rise to an irrecoverable or plastic sinkage OB and a recoverable or elastic
sinkage BA0, and the reloading path BA. Further plastic sinkage is produced as the system undergoes repetitive
reloading and unloading. The Bekker model is in effect, similar to a one-dimensional elastic–plastic model.

To characterize the pressure–sinkage relationship during the loading phase, Bekker [12] proposed the
following equation:

p ¼
kc

b
þ kf

� �
zn, (1)

where kc is the cohesive soil modulus, b the smaller dimension of the tire footprint, kf the friction soil modulus
and n an exponent. These parameters are usually determined empirically. Based on a typical response of a
mineral terrain to repetitive loading, Wong and Preston-Thomas [13] have suggested a pressure–sinkage
relationship for the unloading–reloading stage:

p ¼ pu � kuðzu � zÞ. (2)

Note that pu and zu are, respectively, the pressure and sinkage at the start of the unloading and are related by

pu ¼ keqzn
u, (3)

in which keq ¼ (kc/b+kf). In Eq. (2), ku is a parameter representing the average slope of the
unloading–reloading line AB, and is dependent on zu. Wong [6] gave an approximate relationship

ku ¼ k0 þ Auzu. (4)

Once again, the parameters k0 and Au are determined experimentally and are listed in Ref. [6] for selected
terrain types.

Since the rebound (i.e. recoverable or elastic sinkage) ze is given by ze ¼ keqzn
u=ku, the rebound ratio Z can be

computed from

Z ¼
ze

zu

� 100% ¼
keqzðn�1Þu

k0 þ Auzu

� 100%. (5)

For certain values of zu, the computed rebound ratio in Eq. (5) can exceed 100%, which is incorrect. For
example, using the parameters for LETE sand [6] in Table 1, we get Z ¼ 292% and 126% corresponding to
zu ¼ 0.01 and 0.02m, respectively.

It appears that the source of the problem is the inaccurate linear relationship between k0 and zu, as zu

approaches very small values. To solve the problem, we are suggesting to use the following linear interpolation
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Table 1

Pressure-sinkage and shear strength parameters for various soil types

Terrain type Loose sand [10] Soft soil [6] LETE sand [6]

n 1.6 0.8 0.793

kc (kN/mn+1) 225.14 16.54 102

kf (kN/mn+2) 2216 911.4 5301

k0 (kPa/m) 0a 0 0

Au (kPa/m2) 503,000a 86,000 503,000

c (kPa) 0.6903 3.71 0.7

f (deg) 31 25.6 27.5

K (cm) 3.81 2.1 1.0

aAssumed value.
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for very small zu; specifically, for zupzu1:

Z ¼ Z0 þ
Z1 � Z0

zu1

� �
zu; Z1pZ0p1; (6)

where the upper limit of the interpolation Z0 is estimated by setting zu-0 and the lower limit Z1 is given by
Z1 ¼ keqzn�1

u1 =ðk0 þ Auzu1Þ. If the computed rebound ratio from Eq. (5) exceeds 100% for given values of zu, we
may choose Z0 ¼ 1 as zu-0. Further, zu1 can be determined approximately from experimental data or via
Eq. (5). For given values of zu, the rebound ratio can be computed and thus, allowing zu1 to be determined.
Note that for zuXzu1, Z should still be obtained from Eq. (5).

2.2. Shear stress– displacement relationship

Wong and Preston-Thomas [13] found that for certain types of sand, saturated clay, fresh snow and peat
and for rubber-sand, rubber-snow, rubber-muskeg mat and rubber-peat shearing, the shear stress–displace-
ment relationship can be described fairly well by the following set of equations.

s ¼ smaxð1� e�j=K Þ, (7)

in which the superscript j represents the shear displacement, K the shear deformation modulus and smax the
maximum shear stress, which can be described by the Mohr–Coulomb equation

smax ¼ cþ p tanf. (8)

In Eq. (8), p, c and f are, respectively, the normal pressure, the cohesion and the angle of shearing
resistance.

2.3. Soil damping

To account for equivalent rate effects applied during an unloading and reloading stage of a compacted soil,
a parameter defining the soil geometric damping is used. McCullough [14] provided the following expression
to describe the damping force of the tire Fsd during the unloading and reloading stage:

F sd ¼
�cg _zc for _zc40 and F 0X0;

0 otherwise:

�
(9)

In the above equation, cg denotes the geometric damping constant that is determined experimentally, and _zc

is the vertical velocity of tire. Also term F 0 is defined by F 0 ¼W � cg _zc, where W is the vertical force arising
from the normal pressure and shear stress due to the tire–soil interaction as sketched in Fig. 2, and is given by

W ¼ btrR

Z yF

0

pðyÞ cos yþ sðyÞ sin y½ �dyþ
Z yB

0

pðyÞ cos y� sðyÞ sin y½ �dy
� �

. (10)
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Fig. 2. Tire–soil interaction model.
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3. The incremental Bekker model

As discussed previously, the pressure on the soil depends on the sinkage, as well as, on the pressure path in
reaching the state. To model a tire–soil interaction problem described by the pressure–sinkage relationship
given by Eqs. (1) and (2), it is necessary to employ an iterative procedure. This is not only due to the nonlinear
relationship between z and p in Eq. (1), but also, because a different governing equation is required to describe
the loading and unloading status of the soil. In order to reduce the computational complexity, an incremental
form is proposed and presented in this section. In the proposed method, the nonlinear relationship between z

and p is linearized at every incremental step. The loading and unloading status are then described via a set of
complementarity equations.

Following the approach in the classical theory of plasticity [15], the pressure function during plastic flow f

can be written as

f ¼ p� pu ¼ 0. (11)

The total incremental sinkage from time t0 to t0+Dt can be taken as the sum of the elastic and plastic
incremental sinkage. That is,

dz ¼ dze þ dzp. (12)

Eq. (2) can also be expressed in the following alternate form:

p ¼ kuðz� zpÞ. (13)

Differentiating yields the pressure increment

dp ¼ kuðdz� dzpÞ. (14)

The consistency condition df ¼ 0 for the plastic flow must hold and applying it to the total differential of f

leads to

df ¼ dp�
dpu

dzp

dzp ¼ 0. (15)

From Eqs. (2) and (5), we have

pu ¼ kuðzu � zpÞ ¼ k0 þ Auzuð Þðzu � zpÞ, (16)

where zu can be eliminated via Eq. (3). Differentiating both the sides of Eq. (16) with respect to zp,
we obtain

dpu

dzp

¼
nkupu

�npu þ AuðzuÞ
2
� Auzpzu þ kuzu

¼ kp, (17)
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or

dpu ¼ kpdzp. (18)

When zupzu1, we have kp ¼ npu

�
zuð1� Z0 � 2Z1zuÞ
� �

.
The governing equations for the incremental Bekker model can thus be summarized into the following

compact form:

dp ¼ kuðdz� dzpÞ, (19)

ðp� puÞdzp ¼ 0, (20)

p� pup0, (21)

dzpX0. (22)

Introducing a non-negative parameter u, the above equations can be re-written into a set of complementarity
equations:

0p� 0pu þ dp� kpdzp þ u ¼ 0, (23)

udzp ¼ 0, (24)

dzpX0; uX0. (25)

Note that the left superscript ‘‘0’’ symbolizes quantities at time t0, and in subsequent equations, the left
superscript ‘‘1’’ denotes them at the incremented time t0+Dt. Eqs. (23)–(25) can be regarded as an incremental
form of the original Bekker’s pressure–sinkage relationship given by Eqs. (1) and (2). The Lemke algorithm
[16,17] can be employed to solve the most general form of the proposed incremental model. However, for some
simple cases, such as when dp is known, the solution can be obtained quite easily.

During unloading, we have dpp0, 0pþ dp� 0pup0, and thus, dzp ¼ 0. That is,

dz ¼
dp

ku

. (26)

On the other hand, during loading dpX0 and 0pþ dp� 0puX0, and thus

dzp ¼
0pþ dp� 0pu

kp

and dz ¼
dp

ku

þ dzp. (27)

Finally, during reloading dpX0 and 0pþ dp� 0pup0. For this situation, we have

dz ¼
dp

ku

. (28)

4. Modeling the tire–soil contact

Fig. 2 depicts the model used for the contact analysis between the tire and soil. In the sketch, the contact
area of the tire with the soil is discretized into m segments each of length ls, and Pi which denotes the ith
contact point between the tire and the soil, is assumed to be positioned at the mid-point of the ith contact
segment. The contact forces at Pi are the normal pressure pi and the friction stress fi at time t0+Dt. Note that fi

arises due to the soil shear stress si at the coincident contact point located on the soil P0i.
Also, let the position of the tire’s mass center be denoted by C(yc,zc), and the angle of rotation of the tire

by ac. With these specifications, the equations of motion of the tire can be written as

1 €yc ¼
Fy

M
� lsbtr

Xm

k¼1

pk sin yk þ f k cos yk

M
, (29)
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1 €zc ¼
F z

M
þ lsbtr

Xm

k¼1

pkcos yk � f ksin yk

M
, (30)

1 €ac ¼
Tx

J
� lsbtr

Xm

k¼1

f kR

J
, (31)

in which Fy, Fz and Tx are the applied forces and torque acting on the tire, R is the radius of tire, and M and
J are the mass and moment of inertia of the tire, respectively. Integrating Eqs. (29)–(31) yield expressions
for velocities and positions, namely,

1 _yc ¼
0 _yc þ

1

2
0 €yc þ

Fy

M

� �
Dt�

lsbtr

2

Xm

k¼1

pk sin yk

M
Dt�

lsbtr

2

Xm

k¼1

f kcos yk

M
Dt, (32)

1 _zc ¼
0 _zc þ

1

2
0 €zc þ

Fy

M

� �
Dtþ

lsbtr

2

Xm

k¼1

pk cos yk

M
Dt�

lsbtr

2

Xm

k¼1

f k sin yk

M
Dt, (33)

1 _ac ¼
0 _ac þ

1

2
0 €ac þ

Tx

J
� lsbtr

Xm

k¼1

f k

J
R

 !
Dt, (34)

1yc ¼
0yc þ

0 _ycDtþ
1

4
0 €yc þ

F y

M

� �
Dt2 �

lsbtr

4

Xm

k¼1

pk sin yk

M
Dt2 �

lsbtr

4

Xm

k¼1

f k cos yk

M
Dt2, (35)

1zc ¼
0zc þ

0 _zcDtþ
1

4
0 €zc þ

Fz

M

� �
Dt2 þ

lsbtr

4

Xm

k¼1

pk cos yk

M
Dt2 �

lsbtr

4

Xm

k¼1

f k sin yk

M
Dt2, (36)

1ac ¼
0ac þ

0 _acDtþ
1

4
0 €ac þ

Tx

J

� �
Dt2 �

lsbtr

4

Xm

k¼1

f kR

J
Dt2. (37)

The velocity and position at the contact point on the tire Pi at time t0+Dt are

1 _yi ¼
1 _yc þ

1 _acR cos yi, (38)

1 _zi ¼
1 _zc þ

1 _acR sin yi, (39)

1yi ¼
1yc þ R sin yi, (40)

1zi ¼
1zc � R cos yi. (41)

In view of Eqs. (32)–(37), Eqs. (38)–(41) can be compactly re-written as

1 _yi ¼ F n
1ikpk þ Ft

1ikf k þ g1i, (42)

1 _zi ¼ Fn
2ikpk þ F t

2ikf k þ g2i, (43)

1yi ¼ Tn
1ikpk þ Tt

1ikf k þ p1i, (44)

1zi ¼ Tn
2ikpk þ Tt

2ikf k þ p2i, (45)

where

Fn
1 ik ¼ �

sin yk

2M
lsbtrDt; Ft

1ik ¼ �
cos yk

2M
þ

R2dik cos yk

2 J

� �
lsbtrDt,
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g1i ¼
0 _xc þ

1

2
0 €xc þ

Fy

M

� �
Dtþ 0 _acR cos yi þ

1

2
0 €ac þ

Tx

J

� �
DtR cos yi,

F n
2ik ¼

cos yk

2M
lsbtrDt; F t

2ik ¼ �
sin yk

2M
þ

R2dik sin yk

2J

� �
lsbtrDt,

g2i ¼
0 _zc þ

1

2
0 €zc þ

Fz

M

� �
Dtþ 0 _acR sin yi þ

1

2
0 €ac þ

Tx

J

� �
DtR sin yi,

Tn
1ik ¼ �

sin yk

4M
lsbtrDt2; Tt

1ik ¼ �
cos yk

4M
lsbtrDt2,

p1i ¼
0yk þ

0 _ycDtþ
1

4
0 €yc þ

Fy

M

� �
Dt2 þ R sin yi,

Tn
2ik ¼

cos yk

4M
lsbtrDt2; Tt

1ik ¼ �
sin yk

4M
lsbtrDt2,

p2i ¼
0zc þ

0 _zcDtþ
1

4
0 €zc þ

F y

M

� �
Dt2 � R cos yi.
5. The tire and soil interaction model

To derive the complementarity equations for use in the contact analysis, it is convenient to adopt the
following notation; let the contact forces on the tire at Pi, at the incremented time t0+Dt be represented by pi

and fi. Thus, these same forces at the previous time t0 can be conveniently denoted by 0pi and
0f i. From the

original set of the complementarity equations given by Eqs. (23)–(25), the sinkage increment from t0 to t0+Dt

can be evaluated from the following set of equations:

dzi0 ¼
pi �

0pi

ki0u

þ dzi0p, (46)

pi �
0pi0u � ki0pdzi0p þ zi0 ¼ 0, (47)

zi0dzi0p ¼ 0, (48)

dzi0pX0; zi0X0. (49)

This implies that the sinkage at time t0+Dt is zi0 ¼
0zi0 þ dzi0 . Thus, the z coordinate of the coincident contact

point on the soil P0i at time t0+Dt can be readily computed and the result is

Zi0 ¼
pi �

0pi

ku

þ dzi0p þ
0Zi0 . (50)

Observe that 0Zi0 is the z of the coincident contact point on the soil P0i at time t0. From Eqs. (42)–(45)
and Eq. (50), the gap function gn

i which is defined as the distance from Pi at the tire to P0i at the
soil can be readily determined. Likewise, the relative tangential velocity _gt

i can be computed. Their expre-
ssions are

gn
i ¼ zi � Zi0 ¼ T̄

n

ikpk þ T̄
t

ikf k þ dzi0p þ p̄i, (51)

_gt
i ¼ _yicos yi þ _zisin yi ¼ F̄

n

ikpk þ F̄
t

ikf k þ ḡi, (52)
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in which

T̄
n

ik ¼ Tn
2ik þ

dik

kiu

; T̄
t

ik ¼ Tt
2ik; p̄i ¼ p2i �

0pi

ki0u

� 0Zi0 , (53)

F̄
n

ik ¼ F n
1ik cos 0yi �

0ac �
RDt2

4J

Xm

j¼1

0f j

 !
sin 0yi

" #

þ Fn
2ik sin 0yi þ

0ac �
RDt2

4J

Xm

j¼1

0f j

 !
cos 0yi

" #
, ð54Þ

F̄
t

ik ¼
RDt2

4J
F n

1ij
0pj sin

0yi þ Ft
1ik cos 0yi �

0ac �
RDt2

4J

Xm

j¼1

0f j

 !
sin 0yi

" #

þ
RDt2

4J
g1i sin

0yi �
RDt2

4J
Fn

2ij
0pj cos

0yi �
RDt2

4J

Xm

j¼1

0f jF
t
2ik cos

0yi

�
RDt2

4J
Ft

2ij
0f j cos

0yi þ F t
2ik sin 0yi þ

0ac cos
0yi

	 

�

RDt2

4J
g2i cos

0yi, ð55Þ

ḡi ¼ �
RDt2

4J

Xm

l¼1

0f lF
n
1ij

0pj sin
0yi �

RDt2

4J

Xm

l¼1

0f lF
t
1ij

0pj sin
0yi

þ g1i cos 0yi �
0ac sin

0yi

	 

þ

RDt2

4J

Xm

l¼1

0f lF
n
2ij

0pj cos
0yi

þ
RDt2

4J

Xm

l¼1

0f lF
n
2ij

0f j cos
0yi þ g2i sin 0yi þ

0ac cos
0yi

	 

. ð56Þ

Summation is not implied by the index i in all the above equations. For a contact model with friction, the
contact conditions include the non-penetration constraint

gn
X0, (57)

and the friction constraints with a non-negative friction coefficient m

f
�� ��pmp; when _gt ¼ 0, (58)

f ¼ �signð _gtÞmp; when _gta0. (59)

Note that the Coulomb friction model is adopted for capturing the dry friction behavior.
Based on the contact conditions given by Eqs. (57)–(59) and noting that fi ¼ b1i–b2i the tire–soil interaction

contact model can be compactly described by the following complementarity equations:

ci � T̄
n

ikpk � T̄
t

ikb1k þ T̄
t

ikb2k � dzi0p � p̄i ¼ 0, (60)

u1i � xi � F̄
n

ikpk � F̄
t

ikb1k þ F̄
t

ikb2k � ḡi ¼ 0, (61)

u2i � xi þ F̄
n

ikpk þ F̄
t

ikb1k � F̄
t

ikb2k þ ḡi ¼ 0, (62)

Zi � lðcþ pi tan fÞð1� e�j=kÞ þ b1i þ b2i ¼ 0, (63)

zi0 þ pi �
0pu � kp dzi0p ¼ 0, (64)

cipi ¼ 0; u1ib1i ¼ 0; u2ib2i ¼ 0; Zixi ¼ 0; zi0dzi0p ¼ 0. (65)
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In the above equations, the quantities ci; u1i; u2i; Zi; zi; pi; xi; b1i; b2i; and dzi0p are all non-negatives.
As before, summing over the index i in Eq. (65) is not implied. Also, the parameter l is introduced in Eq. (63)
to handle the prescription of soil cohesion (i.e. c 6¼0) in the soil model. It takes the following value in
accordance to

l ¼
1 for pi40; i:e: shear stress ¼ �ðcþ pitanfÞð1� e�j=kÞ;

0 for pi ¼ 0; i:e: shear stress ¼ 0:

(
(66)

Hence, the proposed incremental model consists of the following nonlinear problems: dynamic analysis of
the tire as described by Eqs. (29)–(37), and contact interaction analysis between tire and soil and elastic–plastic
analysis of the soil as described by Eqs. (60)–(65).

A comparison between the traditional Bekker method and the proposed incremental model is outlined in
Table 2. On a cursory glance, they appear to be similar but the incremental approach possesses a distinct
advantage over the traditional Bekker method and this difference makes the former to exhibit enhanced
computational accuracy and convergency over the latter. As shown in steps 1–2, the two methods solve for the
current shear displacement of the soil j using kinematical quantities of the tire obtained from contact forces:
normal pressures and friction stresses computed at the previous iterative approach still relies on contact forces
that were determined from the previous iterative step. On the other hand, in the proposed incremental
technique, the subsequent tire kinematics were computed using contact forces based on the current iterative
step (Step 4 in Table 2). This is possible since the pressures and friction forces are obtained simultaneously
together with the rest of the tire kinematics during the solution of the set of complementarity equations.
Table 2

Traditional Bekker method versus incremental Bekker method

Traditional Bekker method Incremental Bekker method

(1) Compute unknown tire kinematics: 1 _̄yc;
1 _̄zc; 1 _̄ac

	 

and

1ȳc;
1z̄c; 1āc

	 

at t0+Dt from known tire kinematics

0 €yc;
0 €zc; 0 €ac

	 

, 0 _yc;

0 _zc; 0 _ac

	 

and 0yc;

0zc; 0ac

	 

at t0.

(2) Compute shear displacement j of contact segment i at t0+Dt

based on current tire kinematics: 1 _̄yc;
1 _̄zc; 1 _̄ac

	 

and

1ȳc;
1z̄c; 1āc

	 

.

(3) Compute kinematics of contact segment i: 1 _yi;
1 _zi

	 

and

1yi;
1zi

	 

at t0+Dt based on current tire kinematics

1 _̄yc;
1 _̄zc; 1 _̄ac

	 

and 1ȳc;

1z̄c; 1āc

	 

using Eqs. (38)–(41).

(4) Check loading/unloading-reloading status of contact segment

i at t0+Dt and compute pressure pi from either Eq. (1) or (2)

based on current 1 _yi ;
1 _zi

	 

and 1yi;

1zi

	 

.

(5) Compute the relative tangential velocity _gt
i from Eq. (52)

based on current 1 _yi;
1 _zi

	 

; and compute Si (i.e. fi) from Eq. (7)

based on current pi and _gt
i .

(6) Compute tire accelerations 1 €yc;
1 €zc; 1 €ac

	 

based on current

contact forces (pi,fi) using Eqs. (29)–(31). Then, integrate via

Eqs. (32)–(37) for tire kinematics 1 _yc;
1 _zc; 1 _ac

	 

and

1yc;
1zc; 1ac

	 

.

(7) If 1yc �
1ȳc

�� ��p� and 1zc �
1z̄c

�� ��p�, current iteration has

converged and increase time by the next time-step for a new

round of iteration by going back to Step 1. Otherwise, the

computed tire kinematics 1 _yc;
1 _zc; 1 _ac

	 

, 1yc;

1zc; 1ac

	 

from the

previous Step 6 are used as predicted values for the next round

of local iteration by going back to Step 2.

(1) Compute unknown tire kinematics: 1 _̄yc;
1 _̄zc; 1 _̄ac

	 

and

1ȳc;
1z̄c; 1āc

	 

at t0+Dt from known tire kinematics

0 €yc;
0 €zc; 0 €ac

	 

, 0 _yc;

0 _zc; 0 _ac

	 

and 0yc;

0zc; 0ac

	 

at t0.

(2) Compute shear displacement j of contact segment i at t0+Dt

based on current tire kinematics: 1 _̄yc;
1 _̄zc; 1 _̄ac

	 

and

1ȳc;
1z̄c; 1āc

	 

.

(3) Compute F̄
n

ik, F̄
t

ik,T̄
n

ik, T̄
t

ik, p̄i and ḡi from Eqs. (53)–(56).

(4) Solve complementarity equations (60)–(65) using the results of

Step 3 for unknown pressure pi and friction force fi.

(5) Compute tire accelerations 1 €yc;
1 €zc; 1 €ac

	 

based on current

contact forces (pi,fi) using Eqs. (29)–(31). Then, integrate via

Eqs. (32)–(37) for tire kinematics 1 _yc;
1 _zc; 1 _ac

	 

and

1yc;
1zc; 1ac

	 

.

(6) If 1yc �
1ȳc

�� ��p� and 1zc �
1z̄c

�� ��p�, current iteration has

converged and increase time by the next time-step for a new

round of iteration by going back to Step 1. Otherwise, the

computed tire kinematics 1 _yc;
1 _zc; 1 _ac

	 

, 1yc;

1zc; 1ac

	 

from the

previous Step 6 are used as predicted values for the next round

of local iteration by going back to Step 2.
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This difference in handling not only results in a greater accuracy but also, in an enhanced numerical
convergency of the incremental model over the traditional Bekker approach.

6. Numerical examples

The tire performance is dependent on its interactive response to the time varying normal pressure and shear
stress distributions at the tire–terrain interface [6,18]. From the horizontal component of these distributions
the instantaneous motion resistance and thrust can be easily computed. This information, together with the
drawbar pull, which represents the difference of the thrust over motion resistance, can then be employed to
describe the tractive performance of an off-road tire. In the following two examples, these and other quantities
will be calculated as part of the assessment of the proposed tire–soil model. The first example involves
dropping a rigid wheel onto soft soil in an effort to determine the acceleration response of the tire and the
resulting sinkage of the soil. The second example investigates a moving tire interacting with three soil types:
loose sand, soft soil and LETE sand. The resulting drawbar pull, the normal pressure and shear stress at the
tire–soil interface are presented.

6.1. Example 1: drop wheel test

A rigid wheel impacting soft soil [14] is sketched in Fig. 3 and it is required to compute the acceleration and
position responses. The pressure–sinkage and shear strength parameters of soft soil, which are summarized in
Table 1, are taken fromWong [6]. Additionally, the adopted values of the geometric damping constant and the
damping ratio corresponding to zup0.1623m are cg ¼ 1000N s/m and Z ¼ 10%, respectively. A rigid wheel of
similar dimensions to the 280/70R20 tire is selected for the numerical simulation. Therefore, it has the
following properties: width btr ¼ 0.282m, radius R ¼ 0.4545m, mass M ¼ 32 kg and moment of inertia
J ¼ 2.273 kgm2.

As shown in Fig. 3, the bottom of the tire is indicated by Pt and therefore, the height of the drop onto the
soil Ps is PtPs. Two different initial heights are considered in the simulation: PtPs ¼ 0 and PtPs ¼ 10mm. The
results for accelerations and positions are plotted in Figs. 4 and 5 respectively. Naturally, the acceleration
response and sinkage increases with increasing height of drop. This can be seen in the results of PtPs ¼ 10mm
in Figs. 4(b) and 5(b).
Ps

Pt

g

Fig. 3. Rigid wheel dropping on soft soil.
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Fig. 4. Vertical acceleration response of tire on soft soil: (a) drop height PtPs ¼ 0 and (b) drop height PtPs ¼ 10mm.
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In addition, it would be useful to consider the case of zero drop height, i.e. PtPs ¼ 0 since a semi-empirical
formula for computing sinkage is available for comparison. It is given in Ref. [6] as

zr ¼
3W

btr

ffiffiffiffiffiffi
2R
p
ð3� nÞðkf þ kc=bÞ

" #2=ð2nþ1Þ

, (67)

where btr is the width of the wheel and W is the wheel load. Based on the formula, the computed sinkage is
7.2mm and this figure contrasts reasonably well with the predicted soil sinkage of 7.5mm based the proposed
incremental Bekker model for a tire that has come to a complete standstill. Fig. 6 depicts the variation of
sinkage with different drop heights. As shown, the variation for soft soil appears to be leveling off in a linear
fashion.

6.2. Example 2: moving wheel—modeling tire– soil interaction

This example investigates the interaction of a moving tire with three soil types: loose sand, soft soil and
LETE sand. A vertical load (including wheel weight) of 9.28 kN is first applied to the rigid wheel, which is then
moved horizontally with prescribed slips. In order to compare the results with Liu and Wong [5] and also, with
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Onafeko and Reece [10], we have assumed the rigid wheel to have diameter and width of 1.245 and 0.305m,
respectively. We realized that these are non-standard dimensions but are adopted here to facilitate the
comparison. Additionally, the wheel is assumed to have a mass of M ¼ 64 kg, and a moment of inertia of
J ¼ 4.546 kgm2. The terrain is loose sand as described in Onafeko and Reece [10]. The parameters for
pressure–sinkage and shear strength are tabulated in Table 1 under loose sand. Since k0, and Au are not given
in either of the two references, we have assumed the following values for them; k0 ¼ 0.0, Au ¼ 503,000 kN/m4.
The rebound ratio is taken to be Z ¼ 9.31% for zup0.001m.
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Fig. 7 presents the drawbar pull at five prescribed slips of 3.1%, 7.1%, 12.1%, 17.1% and 22.1%. Choosing
the two extreme ends of the slips, namely, at 3.1% and 22.1%, the distributions of normal pressure and shear
stress along the wheel–sand interface are plotted in Fig. 8(a) and (b), respectively. Superimposed on Fig. 8 for
the purpose of comparison are finite element results of Liu and Wong [5], and experimental data of Onafeko
and Reece [10].

Observe that the agreement with Onafeko and Reece [10] experimental data is reasonably good,
particularly in the trend and pressure magnitudes. However, maximum pressure occurs at the zero angle.
This is because in the Bekker approach, the pressure is dependent only on the sinkage (see Eqs. (1)–(3))
and maximum sinkage occurs at the zeroth angle. It should also be pointed out that the k0 and Au values
employed in our simulation may be different from those of Refs. [5,6] as they are not listed in the two
papers. Further, when zu takes on very small values (similar to the one used here), it is necessary to resort
to a different equation than the widely accepted linear relationship between k0 and Au for computing the
rebound ratio Z. We have mentioned in Section 2.1 that the currently used equation is not accurate for
very small values of zu and we have proposed an alternative equation that we employed to produce our
simulation results.

We have also generated similar results for two further terrain types: soft soil and LETE sand.
Once again, the parameters for these two soil types are listed in Table 1. For this set of
results, a rigid wheel of similar dimensions to the 280/70R20 tire is employed in the simulation
with the same physical parameters listed in Example 1. For soft soil, the rebound ratio is taken
to be Z ¼ 10% for zup0.1623m and for LETE sand, the corresponding information is Z ¼ 10% for
zup0.1637m.

The drawbar pull, and the normal pressure and shear stress distributions along the wheel–sand inter-
face are drawn in Figs. 9–12 for the two selected soils. Figs. 9 and 10 depict the drawbar pull for varying
prescribed slips, and Figs. 11 and 12 show the normal pressure and shear stress distributions for the two
soil types.

Table 3 lists the sinkage and rebound ratio at varying slips for the three selected soil types. Observe that
both sinkage and rebound ratio do not appear to change with the slip.
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7. Conclusion

In this work, an incremental form of the traditional Bekker model for analyzing tire–soil interaction
problems is presented. The method involves formulating the contact dynamics in terms of complementarity
equations. This approach allows the contact forces to be evaluated as part of the solution of the unknown



ARTICLE IN PRESS

0

30

60

90

120

150

0

S
tr

e
s
s
 (

k
P

a
) 

0

30

60

90

120

150

-20 0 20 30 40

S
tr

e
s
s
 (

k
P

a
) 

-10 10

Angle (�°)

Angle (�°)

�

-20 -10 10 20 30 40

Fig. 11. Normal pressure and shear stress distributions at tire–soft soil interface: (a) 3.1% slip and (b) 22.1% slip, —— normal pressure,

– � – shear pressure.

S.G. Mao, R.P.S. Han / Journal of Sound and Vibration 312 (2008) 380–398396



ARTICLE IN PRESS

0

50

100

150

200

250

300

-5 0 5 15 20

S
tr

e
s
s
 (

k
P

a
) 

0

50

100

150

200

250

300

S
tr

e
s
s
 (

k
P

a
) 

-10 10

Angle (�°)

-5 0 5 15 20-10 10

Angle (�°)

�

Fig. 12. Normal pressure and shear stress distributions at tire-LETE sand interface: (a) 3.1% slip and (b) 22.1% slip, —— normal

pressure, – � – shear pressure.

S.G. Mao, R.P.S. Han / Journal of Sound and Vibration 312 (2008) 380–398 397



ARTICLE IN PRESS

Table 3

Computed sinkage and rebound ratios for varying slips

Slip (%) Sinkage (m) Rebound ratio (%)

Loose sand Soft soil LETE sand Loose sand Soft soil LETE sand

3.1 0.129 0.080 0.020 1.32 10.19 10.19

7.1 0.129 0.080 0.020 1.33 10.19 10.19

12.1 0.128 0.079 0.020 1.33 10.19 10.19

17.1 0.128 0.079 0.020 1.34 10.19 10.19

22.1 0.128 0.079 0.020 1.33 10.19 10.19

S.G. Mao, R.P.S. Han / Journal of Sound and Vibration 312 (2008) 380–398398
kinematics. Hence, during the iteration the contact forces will always stay current, as opposed to the use of
contact forces that have been evaluated at the previous time-step in the traditional Bekker method. The net
result is enhanced computational accuracy and convergency of the proposed incremental Bekker approach
over the traditional Bekker method. Two examples are described as part of the assessment of the new tire–soil
interaction model. Information involving soil sinkage, drawbar pull, and normal pressures and shear stress at
the tire–soil interface for three different soil types is provided in comparison with published results. The
comparison shows good agreement.
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